12 United States Patent

Gardner

US008868933B2

US 8.868.933 B2
*Qct. 21, 2014

(10) Patent No.:
45) Date of Patent:

(54)
(75)
(73)

(%)

(21)
(22)
(65)

(60)

(1)

(52)

(58)

PERSISTENT SERVICING AGENT

Inventor: Philip B. Gardner, Woodbury, MN (US)

Assignee: Absolute Software Corporation,
Vancouver, BC (CA)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 2342 days.
This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 11/093,180

Filed: Mar. 28, 2005

Prior Publication Data
US 2005/0216757 Al Sep. 29, 2005

Related U.S. Application Data

Provisional application No. 60/556,742, filed on Mar.
26, 2004, provisional application No. 60/601,209,
filed on Aug. 13, 2004, provisional application No.

60/663,496, filed on Mar. 18, 2003.

Int. CI.

HO4L 9/32 (2006.01)

GO6F 21/57 (2013.01)

GO6F 21/73 (2013.01)

GO6F 21/58 (2013.01)

GoO6F 21/10 (2013.01)

GO6F 21/50 (2013.01)

U.S. CL

CPC ...l GO6F 21/50 (2013.01); GO6L 21/57

(2013.01); GO6F 2221/2119 (2013.01); GO6F

21/73 (2013.01); GOGF 21/88 (2013.01); GO6F
21/10 (2013.01)

USPC oo, 713/194; 726/3; 726/22; 726/26;
709/202

Field of Classification Search
CPC GO6F 21/10; GO6F 21/50; GO6F 21/88
USPC 713/1, 2, 188, 194, 193; 380/200, 201,
380/255, 27777,726/2, 22, 25, 34, 35, 3, 26;
717/168, 171; 709/202
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,319,751 A *
5,444,850 A

6/1994 GAINEYocovevvrereereree., 711/115
8/1995 Chang

(Continued)

FOREIGN PATENT DOCUMENTS

8/2002
5/2003

(Continued)
OTHER PUBLICATIONS

JP 2002-236590
JP 2003-141011

International Search Report of Related Case PC'T Application No.
PCT/US2006/010381.

Primary Examiner — Saleh Nayjar
Assistant Examiner — Peiliang Pan
(74) Attorney, Agent, or Firm — Liu & Liu

(57) ABSTRACT

A tamper resistant software Agent for enabling, supporting
and/or providing various services (e.g., tracking assets; data

delete and updating soitware) comprises multiple functional
modules, icluding a loader module (CLM) that loads and
gains control during POST, independent of the OS, an Adap-
tive Installer Module (AIM), and a Communications Driver
Agent (CDA). Once control 1s handed to the CLM, it loads the
AIM, which 1n turn locates, validates, decompresses and
adapts the CDA for the detected OS environment. The CDA
exists 1n two forms, a min1 CDA that determines whether a
full or current CDA 1s located somewhere on the device, and
it not, to load the full-function CDA {rom a network; and a
tull-function CDA that 1s responsible for all communications
between the device and the monitoring server. In another
aspect, the servicing functions that the Agent performs can be
controlled by a remote server, by combining generic sub-
function calls available in the Agent. This programmable
capability of the Agent allow 1ts Tunctionality to be extended
based on server-driven commands.

18 Claims, 11 Drawing Sheets

{ implonted viz hordwars, softwore, firmwere
._(;;:’:'l o ROM, Fosh ROM, EPROM. microprocessor)

“dgent” A Al
impianfed -
on "Chant”

| g e Device
: CaMaLs s-mn viog Lﬂ,ﬂ'f (=Ml Ufﬂ'.f'

4-? AJ

W
Saraﬁfsfe osh 0!

Tdentilying
ond

Fittering

Audiling
grd
Commumicalion

US 8,868,933 B2

Page 2
(56) References Cited 7,346,781 B2* 3/2008 Cowieetal. 713/189
7,373,553 B2* 5/2008 Trippetal.occocovvvnenn, 714/37
U.S. PATENT DOCUMENTS 7,400,650 Bl 7/2008 DiMambro
7,484,245 Bl 1/2009 Friedman et al.
5,680,547 A 10/1997 Chang 2002/0001924 Al* 7/2002 Vicanetal. 713/168
5715,174 A 7/1998 Cotichini et al. 2002/0092014 Al 7/2002 Shibusawa et al.
5,748,084 A 5/1998 Isikoff 2002/0194500 A1 12/2002 Bajikar
5,764,892 A 6/1998 Cain et al. 2003/0005316 Al 1/2003 Girard
5,802,280 A 0/1998 Cotichini et al. 2003/0051090 Al 3/2003 Bonnett et al.
6,081,850 A * 6/2000 GArNEY .rovverevevereerrenn.. 710/15 2003/0172306 Al 9/2003 Cain et al.
6,244,758 Bl 6/2001 Solymar et al. 2003/0227392 Al* 12/2003 Ebertetal. 340/825.49
6,269,392 Bl 7/2001 Cotichini et al. 2004/0039800 Al* 2/2004 Blacketal. 709/220
6,275942 Bl* 82001 Bernhardetal. 796/27 2004/0249927 Al* 12/2004 Pezutticccoeee, 709/223
6,300,863 B1* 10/2001 Cotichinietal. 340/5.8 2005/0044404 A1 2/2005 Bhansali et al.
6,507,914 Bl 1/2003 Cain et al. 2005/0125449 A1* 6/2005 Wongetal. 707/104.1
6,530,018 B2* 3/2003 Fleming, IITc.cccevvvrnnnn 713/1
6,574,655 B1* 6/2003 Libertetal. 709/200 FOREIGN PATENT DOCUMENTS
6,674,368 B2* 1/2004 Hawkinsetal. 340/573.4
6,833,787 B1* 12/2004 Levi ...c..ccoovvivviniinil, 340/539.13 JP 2003-228486 Q/2003
7,012,520 B2* 3/2006 Webb, Sr. 340/539.13 WO 06/13002 5/1996
7,046,138 B2* 5/2006 Webb, Sr. 340/539.13 WO WO 01/84455 11/2001
7,124,101 B1* 10/2006 Mikurakccccovnenee, 705/35 WO WO 2005/096122 10/2005
7,200,658 B2* 4/2007 Goelleretal. 709/224
7,266,849 B1* 9/2007 Gregoryetal. 726/34 * cited by examiner

U.S. Patent Oct. 21, 2014 Sheet 1 of 11 US 8,868,933 B2

Agent implanted vio hardware, software, firmware
(guch as ROM, Flash ROM, EPROM, microprocessor)

"Agent” A AT Az AJ A
implanted -~ o
on "Client” ,
Device ;CJ,
I S R

Private
Network

Cablevision Qevice Laptop
{ '3

L - Caole
N |
Leased |Line /9 jeleongne Line 57
> 4 B, Satellite
Public Switched 0n ARadio” fower
Telephone Network |” = Ii
ey B3IV Cable Network
. B1
L7 Telephone Line
Telecom- Internet Telephorze Line
munnication Provider Cable K
Link RN S
—3g 56 A i -
Automatic Number Identification Satelite D'?g, ant Ig/;’ g

Dialed Number [dentification and

Filtering

Processing,
Auditing
and
Communication

|

“Host"
Monitoring
System

L|

l

U.S. Patent

13

Oct. 21, 2014

Sheet 2 of 11

Core BIOS Flash Image

PClI
Option
ROM |

|2,

This PCl Option ROM

contains all 3 modules in
the Flash only image

FIG. 2

PCI Option ROM

Computrace
Loader Module

TP ol T A W o g gy e o'yl ubr w
..........................

Module

. Agent Installation

1 S0 AM

14 K M

Agent
~10Kb

18 COA | |

a
Bl pm e ey mna s i mnhmk nm nlw w b bk % el e ke b e Y N N O T

FIG. 3

I-,'.

}

P.-F'
I

US 8,868,933 B2

PCl header
Setup environ low
Loads AIM
Final resize

Installs Agent in l O
supported OS types

Supports NT/2000/XP

and 9x/Me

Supports FAT/FAT32

and NTFS

Agent self-installs
iInstance as service in
0S

The Agent service, once
installed, initiates all
server sessions

U.S. Patent Oct. 21, 2014 Sheet 3 of 11 US 8.868.933 B2

BIOS POST
2 \ Self-Test / Chipset- . Load in RAM 25
L Config <
. v
‘ZLN Opthn ROM Scan e Call Init Entry rJ Zq-
No
‘ ok?
i Yes
27 —~_,| Write-Protect Memory g g
: Move High | 2-
+ .
|
? Boot-Device / Post | v I
2.8~ Complete (Int 19h) init Complete call Fina 21

e

20 FIG. 4

U.S. Patent Oct. 21, 2014 Sheet 4 of 11 US 8,868,933 B2

Find the Phoenix 3 l
POST Memaory
Manager

Allocate a control Z 0
3 z.

s il i el —

Allocate memory for
-Compressed app 35
- backup of app memory (64K)

!

Alloc 64K of conventional memory
for DECOMPRESSED exec of 34
application

26

3S /(
Y . .
) N l .] l Execute Application > @

.
37 —_Y_—I Hook Int 15h to

STUB_BLOCK

Disk
Services
Availahle?

Video vector
(int 10h)
below the

XBDA

° Free Memory '97

Shrink Option 0
ROM to Zero e ‘IL

FIG. 5

U.S. Patent Oct. 21, 2014 Sheet 5 of 11 US 8.868.933 B2

Interrupt 15h tngger | —~— 42

v

” 44
G

Chain Interrupt back to

original Int

Disk Services
ready and Video

Vector <= XBDA

v] 4S

Restore Int 15h and Hook
Trigger Int xxh
(set TRIGGER INTNUM)

- Next Int xxh trigger
(set TRIGGER INTNUM)

FIG. 6a

U.S. Patent Oct. 21, 2014 Sheet 6 of 11 US 8.868.933 B2

Restore Int xxh q,‘]
(set TRIGGER INTNUM)
Switch Stacks ({-8

Backup DECOMPRESSED appmem to LI'?
extended memory (BACKUP BLOCK)

Copy COMPRESSED app to
DECOMPRESSED appmem block S0

Restore DECOMPRESSED appmem from
extended memory (BACKUP BLOCK) Sl

Restore Switched Stack b~ -SZ.

Chain Interrupt back to

original Int xxh 53
(set TRIGGER INTNUM)

FIG. 6b

U.S. Patent

5S

5

Scan basic |
partitions for
active partition

%
v 5

Find BOOT.INI or |

MSDOS.SYS
configuration files |

R 557
For each system i
directory install |
agentin self- |
instaliation mode

L 9
. R R R RS SRS

e,

I

Oct. 21, 2014 Sheet 7 of 11
. Dnve 80 S
Pamary Partiton 1 - FAT16 » not Adtve ;—-—}i Logical Pasution § - FATI2 « not Active
: P
: : : y
i Prmgry Parlition 2« NTFS - Aclive i % Logreal Pactition 2 - Extended
»-—- Pnrary Pantition 3 - Extended ; ; . NIA
- — L
P |
! i Pomary Partition 4 - Emply I i N/A
i ioi
BOQT.IN!
: [boot ioader]
P Umeout=3
i defaut=muti{Cldiski0)risk{Q)partiticn{ 2RWINDOWS
. {operating systems]

| Installer Mode
; Entrypoint

s mulki{B)disk{OjrciskiDparniton(2 \WINDOWS="Mitrosoft Winaows XP Professional (#1)
muli{0)disk{Drdisk(O}parution(S IWINDCWS="Microsoft Windows XP Protessional (#2)"
CABCOTSECT.DAT="Microsoft Windows 98 SE°

System Directories

L

. multi{0)cisk(0)rdisk(Ojpartition(2\WINDOWSISYSTEM32

gy rwyrpyrruyrrir iy SHiskj

L v L

+
H

mutti(0)disk(0}rdisk({Cipantition(SAWINDOWSISYSTEM32

r
:

CAWINDOWS

- = - et i ELFEi. ghep e SIS EaE L

- Make new copy
of self as

1
}
b

fproms emmme nns enama

4
4

. Service Module

)

51

FIG. 7

5

| |
.~ Register the
| Service Module I
|

o ——mpre

US 8,868,933 B2

MSDOS.SYS

jPaths]
WinOi=CAWINDOWS
Win2ooiDirCAMNDDOWS
HesiWinBootBrv=C

[Onticns]

| BootGli=1

WinVer=4 102272

B e S P MWS-wn e rwrerers deliokell o kel B kP PR A D iR

o L !

Terminate

]

FIG. 8

' The Installer Mode of

!

f‘ the Agent executes

. only once. It simply

..........

. registers:a copy of
- tself as a Service
and terminates.

A - mr

= - = ow. -

U.S. Patent Oct. 21, 2014 Sheet 8 of 11 US 8.868.933 B2

43

Searvice Module | The Service Mode of
- T o Wait 4 the Agent is the
Entrypoint | i .
; normal operation

e m; — —— state. After setting

‘ nitialize Service | Launchan | up the service
Environment ; instance of itself <— environment it waits
| in Session Mode | to launch sessions.

41 FIG. 9

—_—

The Agent's
i communication's

o i;,SE{"I-FEf_ .

y
. layer executes
;
e . under user
. context
Service s - ’a e e
| 32 3
T Ay T '? Communicaticns _, —connect (Ml cannect) '\}: | j
— 7 e - 2ct (Nl ")f-m . Identify Agent
Each . P ¢ . Set Machine Status
;) e e] _
. aChn SeSSIOn | (Supports TCPIIP, N, request data (hiip:4 gel) - 5n32:fi:;:£:e
is a separate 2 | HTTP HTTPS.and | S N0 - Configure Agent
. b] TAPI) { respond (hifp:// posi) N g g
instance of] /'
the service : ; | .
: i I -.+.....; -4",‘?‘,...,_ .- AR A R A v T g e ,fﬂ:- -
v q o P
| S The Server »
1 P : P
| e - uniquely |
, Session Instance : identifies and
~ . : configures each | Monitoring History.
e i e e e e et s : CnnﬁgU'aﬁDn. and
N Agent Software Updates

. The Agent’'s session
 layer executes at
system privilege.
Software and registry

- —tt e ol ke e 1l

Software and

Regist . :
szﬁ:n; - settings are modified

during the Session.

P —————

FIG. 10

U.S. Patent

US 8,868,933 B2

Oct. 21, 2014 Sheet 9 of 11
Computrace
Loader Module PCI Option ROM Loader—
(CLM)

/

PCI Option
ROM
Header

Image Access Functions

/BIOS |
POST

Adapt & Install
Locate, CDA

decompress &

execute
AlM

CLM AlM

Computrace Adaptive installer

{ oader Module
(2 - 4 KB)

Moduie
{(~8 KB}

Flash
Image

Communications
& Application
Functions

>

CDA
Communications
Driver Agent
(~10 KB)

Computrace

FIG. 11

7w

Loader Module

(CLM)

PCI Option
ROM

IMAGE ACCESS FUNCTIONS
|

PCI Option ROM Loader

Hard Drive

Cnmputraca

HPA Security

Module

FIG. 12

\POST

HPA Lock/Unlock
and Image
Management
Functions

U.S. Patent Oct. 21, 2014 Sheet 10 of 11 US 8,868,933 B2

Computrace
Loader Module
(CLM)

| / BIOS
PCI Option ROM Loader - \POST

PCI Option Flash
ROM IBIDS
mage

J Hard Drive

image
Management
Functions
Partition _
Gap
M
IMAGE ACCESS FUNCTIONS
; 4 Base Agent

Module

FIG. 13

U.S. Patent

Oct. 21, 2014 Sheet 11 of 11

Client calls Server at time/
date set at last call

N - -

MultiSKU
Client/Server Interaction
STANDARD CALL

2

US 8,868,933 B2

Client calls Server (IP or Modem)

Client responds with data
requested

NS

Request Data

Server sees call as a
requiar call

Server requests:
ESN
OEMID
Ciient Time

Requested Data is sent

Client recieves data,
updates fields as required.
Saves settings (to data
area in partition table)

ik g i 0}, L i fq;" Al bt
oM AR LTS PR

{

L - 2 S

Sends updated data

.f [L y Jou ‘r'_ l.:;:

S EAEnd of Call ke

R L M RN o g TS J I
-1 T - T

Wi
< AcK packetsent to server

NOTE:

| Call ends only if no update or asset tracking action

required (see page “Update/Asset Tracking™)

Server [ooks up
ESN+OEMID in database.
Checks forfsends data in
this order:

Disable Client? (If set, no
other flags are checked)
next/last call time/date
new phone number

new URL

new |P address

new |P port

Disable modem callout
enabie modam callout
replace dup ESN

retrieve PC info

remove predial strings
reset password

update Async if [P call
Disk Write Flag

F1G. 14

US 8,868,933 B2

1
PERSISTENT SERVICING AGENT

This application claims the priornity of U.S. Provisional
Application No. 60/556,742, filed Mar. 26, 2004, U.S. Pro-
visional Application No. 60/601,209, filed Aug. 13, 2004, and
U.S. Provisional Application Ser. No. 60/663,496 filed Mar.

18, 20035, which are fully incorporated by reference as if fully
set forth herein.

All publications referenced herein are fully incorporated
by reference, as 11 fully set forth herein.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a persistent or tamper
resistant servicing agent in a computer and network environ-
ment.

2. Description of Related Art

In today’s competitive business environment, information
technology (IT) 1s playing an increasingly important role in
the exchange of knowledge in day-to-day business functions.
Individuals, systems, organizations, and other business assets
are interconnected 1n this emerging economic web, and as this
I'T landscape grows increasingly complex, so does the need to
eificiently manage computer assets. As a result, organizations
now, more than ever, are recognizing the need to take control
of, manage and secure their computer asset base, in order to
maximize their mvestment and attempt to control costs.

The amount of time and fiscal resources required to man-
age computers 1n a network can be significant. These assets
support key business processes such as e-commerce and busi-
ness itelligence. I these assets are not protected, and there 1s
no ability to proactively manage them, the potential for short
and long-term loss 1s enormous.

One of the main challenges organizations are encountering,
1s the ability to manage a specific software image and required
updates on the device storage drive, and to track the location
and ongoing migration of their computers. Knowing what
assets one has and how they are changing 1n time 1s funda-
mental to ongoing IT asset and policy management. This
knowledge also enables better planning and budgeting, such
as hardware or software upgrades, or computer retirement.
This problem 1s further compounded as companies expand
geographically, and as the adoption of mobile and remote
systems becomes increasingly popular. Keeping track of
these assets and the software images on them 1s not only
important for the value of the computer 1tself, but often more
importantly, for the protection of the valuable dataresiding on
the machine. A missing or misconfigured asset may have
readable confidential or proprietary information on 1t, or not
have anti-virus updated, or it may still have rights to access a
corporate network. Companies must be able to account for
their assets and their configuration; and know not only what 1s
on them 1n terms of hardware and software, but also where
they are, and who 1s using them. Only with this additional
information can orgamzations begin to address 1ssues of secu-
rity and regulatory compliance with remote and mobile users.

With the increase 1n processing power for mobile comput-
ing devices, more and more individuals have opted for mobile
computing devices, either as replacements to their desktop
units, or as additional devices for home or small business
networks. While individuals are not primarily concerned with
computer asset mventory and configuration management,
they nonetheless share similar concerns as large organiza-
tions, 1 regards to keeping track of personal computer assets
and protection of personal data.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

Most IT departments will support the statement that con-
ventional asset management solutions can’t accurately
account for the ever-increasing population of remote and
mobile users. In fact, a typical organization will lose up to
15% of'1ts PC assets over a 2 year period to PC driftl—where
assets are not necessarily lost or stolen, but they simply can-
not be accounted for due to the many times they’ve changed
owners or departments since first being provisioned. On aver-
age, most organizations can only accurately identity 65% of
their actual PC asset base when asked to do an mventory?2.
Best practices demands that IT know where at least 90% of
PC assets are located at all times.

Remote and mobile computer assets that travel outside a
L AN are problematic 1n a number of ways. Initially, most
asset tracking software cannot track these machines when
they are not connected to the local network. Also, these
remote machines pose a large security threat to the entire I'T
network. More often than not the remote user 1s responsible
for the admimistration and configuration updating of the
machine rather than the IT administrator. Most users are
normally not as security conscious as they should be. Users
may lower security settings, install malicious software
unknowingly, let anti-virus soitware fall out of date and fail to
install the latest security patches. What may seem like minor
security faults to a remote user can have drastic effects on the
entire network. When the remote user connects the LAN they
may infect the entire network due to these relaxed security
concerns. Without effective asset management tools for these
remote machines I'T administrators cannot ensure the integ-
rity of the entire network. A network 1s only as secure as its
weakest link. The annual CSI/FBI survey on computer secu-
rity shows that 57% of stolen PC assets are used to perpetrate
additional crimes against corporations.

In a response to recent corporate accounting scandals,
identity theft and malicious hacking, governments are estab-
lishing regulations that force businesses to protect and be
accountable for all sensitive digital information. The Sar-
banes-Oxley Act of 2002 1s an excellent example of such a
regulation. With Sarbanes-Oxley there 1s increased exposure
when not accurately reporting assets. Executives are asked to
legally verity if the proper controls and regulations are 1n
place to ensure accurate asset reporting. It 1s now the fiduciary
responsibility of the CFO and CEO to ensure that accurate
asset reporting 1s performed. The legal, regulatory and finan-
cial exposure to an organization that inaccurately reports 1ts
asset base could be significant. Computers often make up a
material percentage of an organizations asset base and thus
require accurate reporting. The Gramm-Leach-Bliley (GLB)
Act 1s another regulation to ensure customer records are pro-
tected 1n the financial sector. Likewise, the Health Insurance
Portability and accountability Act (HIPAA) established fed-
eral privacy standards to protect the confidentiality of medical
records and health information. If organizations do not effec-
tively track all of their computing assets there could be severe
regulatory concerns.

For an asset tracking and/or configuration management
application to undertake 1ts tracking function, it should be
able to resist certain level of tampering by a user. In the
context of asset tracking, typically, an authorized user 1s a
person responsible for some aspect of the life-cycle manage-
ment of the computer. In this context, the tracking agent
should be able to protect the authorized user from the acci-
dental removal of the software agent, while allowing the
legitimate need to disable the agent ({or example at end of life
of the computer asset). An unauthorized user 1s a person who
wishes to remove the agent software, but who 1s typically not
responsible for the life-cycle management of the computer. A

US 8,868,933 B2

3

reason for a deliberate, unauthorized attempt to remove the
agent would include actions of a thief or potential thief who
wishes to ensure that any tracking software 1s permanently
removed. An attempt of un-authorized yet accidental removal
would include someone’s successiul or unsuccessiul attempt
to istall a new operating system, or re-image the hard drive,
for example.

Attempts to track, manage and update PC assets and their
configurations are further challenged 1n view of the fact that
during a PC’s lifecycle 1t will undergo many hardware, soit-
ware and 1mage changes including: break/fix repairs, con-
figuration changes, operating system reinstalls, hard-drive
reformats/replacements, system crashes and user-driven con-
figuration changes. Many of these changes will require a
reinstallation of the operating system whereby the original
footprint, 1dentification or tracking agent of the PC asset can
be disabled or removed. This change, i not diligently
recorded and tracked, 1s the beginning of a PC asset drifting,
from a known state into an unknown state. These routine PC
life cycle operating requirements can increase the complexity
and challenge of tracking PC assets, especially those that are
remote and mobile.

Heretofore, existing asset tracking applications are defi-
cient in the Windows NT/2000/XP environment to the extent
that they do not display the features necessary to achieve the
required persistence against tampering by unauthorized
users. These tracking applications are generally easily
defeated by the unauthorized or accidental user actions
referred above, or other simple acts such as deletion of reg-
1stry settings or deletion of application files.

Absolute Software Corporation, the assignee ol the present
invention, has developed and 1s marketing Computrace, a
product and service that securely tracks assets and recovers
lost and stolen assets, and AbsoluteTrack, a secure asset
tracking, and inventory management, solution powered by
the Computrace technology platform. Computrace deploys a
stealth agent, which 1s a software client that resides on the
hard drive of host computers. Once 1nstalled, the agent auto-
matically contacts a monitoring center on a regular basis
transmitting location information and all auto-discovered
asset data points. Ongoing communication between the agent
and the monitoring center requires no user intervention and 1s
maintained via an Internet or phone connection. As long as
the computer 1s turned on and has either a connection to a
telephone line or access to the Internet (through an ISP or
through a company network), the Computrace agent will be
able to report asset data to the monitoring center. The user
intervention-free communication between the agent and a
monitoring center ensures the authorized user of the agent to
have secure access to up-to-date location information and
comprehensive asset data about their entire computer mven-
tory. Whether used stand-alone, or as a complement to an
existing asset management tool, AbsoluteTrack has been a
cost-etfective application service for helping businesses of all
s1zes monitor remote, mobile and desktop computers and
perform daily hardware and software inventory tracking
functions. Computrace has been an etfective tool to track thett
of mobile computers, and to recovery of stolen mobile com-
puters.

The technology underlying various Computrace products
and services have been disclosed and patented in the U.S. and
other countries, which patents had been commonly assigned
to Absolute Software Corporations. See, for example, U.S.
Pat. Nos. 5,715,174;5,764,892; 5,802,280, 6,244,758; 6,269,
392; 6,300,863; and 6,507,914; and related foreign patents.
Further information concerning AbsoluteTrack has been pub-
lished by Absolute Software Corporation (e.g., AbsoluteT-

10

15

20

25

30

35

40

45

50

55

60

65

4

rack—Secure Computer Asset Tracking Solution, a white
paper, published Apr. 25, 2003).

The agent software that 1s deployed on each protected
device 1s stealthy, making 1t resistant to detection by the user
of the computer. The level of tamper-resistance directly
impacts the difficulty of detection and level of skill required to
defeat the Computrace service. While the software-only
Computrace agent 1s as tamper-resistant as a disk-based util-
ity can be, 1t would be desirable to develop an improved agent
that provide additional level of tamper-resistance, and further
enable, support and/or provides services beyond asset track-
ing and recovery.

SUMMARY OF THE

INVENTION

The present invention 1s directed to a servicing Agent for
ecnabling, supporting and/or providing services relating to
management and protection of assets (including without limi-
tation hardware, firmware, software, data, etc.) and their soft-
ware configurations, with improved tamper resistance. The
services may include asset tracking, asset recovery, data
delete, software deployment, etc.

The software Agent comprises multiple modules. Each
module 1s designed to function 1n a specific operating envi-
ronment. The modular design provides flexibility in config-
uring the agent for deployment 1n the particular operating
environment, for example, 1n the BIOS or on the hard drive,
without having to rebuild the entire application. The Agent
may be implemented by software, and may reside 1n software,
firmware and/or hardware within a system.

In accordance with one aspect of the mvention, a loader
module 1s loaded and gains control during power-on seli-test
(POST). The Agent can be relied upon to enable, support
and/or provide services (e.g., tracking, data delete and soft-
ware updates) with respect to the device in which 1t 1s
installed, as well as assets associated with the device in which
the Agent 1s 1nstalled. Once control 1s handed to the loader, 1t
acts to load other functions and modules of the Agent, includ-
ing as necessary and at the appropriate time, the reloading
across the network (e.g., Internet) of portions of the Agent
that may have been removed or missing from the machine.
The software Agent has the ability to be persistent 1n spite of
actions that might ordinarily be expected to remove 1t.

In one embodiment of the present invention, at least one
module and/or data for the agent code of the persistent Agent
1s implemented 1n the firmware of a device, such as a ROM,
and 1n particular the basic mput output system (BIOS) or 1ts
functional equivalent, resident 1n the device. The software
Agent can load 1tself to be ready to perform 1ts designed
servicing function (e.g., tracking, data delete and software
updates), independent of the operating system of the device,
and can adapt 1itself to the environment (e.g., the operating
system of the device) that controls certain basic operations
(e.g., input/output) of the device by detecting the operating,
environment, so that the Agent can make use of such basic
operations of the system to perform its designed servicing
functions.

In another embodiment, the persistent agent comprises
three main modules, including the “Computrace” Loader
Module (CLM), the Adaptlve Installer Module (AIM), and
the Communications Driver Agent (CDA). The CLM loads
the AIM, which in turn locates, validates, decompresses and
adapts the CDA for the detected OS environment. In one
embodiment, the CDA exists in two forms, a partial or mini
CDA and a full-function CDA. The function of the min1 CDA
1s to determine whether a full or current CDA 1s located
somewhere on the device, and 11 not, to load the full-function

US 8,868,933 B2

S

CDA across the network (e.g., Internet) from a monitoring
server. The full-tunction CDA 1s then responsible for all com-
munications between the device and the monitoring server. In
another embodiment, the different modules, and 1n particular
the CLM, may be programmable, which may require custom
functionality to adapt to their specific environment. By pro-
viding Agent in several modules, the level of customization
could be kept to a mimimum. In one embodiment, at least the
CLM 1s stored 1in firmware, such as the BIOS, with one or
more of the other modules stored 1n hard drive partition gap,
or the hard drive Host Protection Area (HPA). In another
embodiment, the CLLM 1s stored 1n a substitute Master Boot
Record (MBR), or a combination of the foregoing.

In another aspect, the servicing functions that the Agent
performs can be controlled by a remote server, by combining
generic sub-function calls available 1n the Agent. This pro-
grammable capability of the Agent allow 1ts Tunctionality to
be extended based on server-driven commands. The extensi-
bility 1s critical to the successiul deployment of the Agent in
firmware, such as the BIOS, where space 1s at a premium and
frequent updates to add or change functionality 1s not eco-
nomical. The extensibility feature 1s a primary component of
the activation process and the reactivation process of the
Agent.

In another aspect of the present invention, the extensibility
of the Agent enables a data delete application, for erasing data
stored at the client device.

In yet another aspect of the present invention, the extensi-
bility of the Agent enables software updates to be delivered
and programmed onto the client device.

The invention improves upon the ability for a pre-deployed
soltware Agent to remain “active” regardless of the actions of
a “user” of the device. In the context of the invention, “active”
refers to the specific ability of a component of the Agent
soltware to load 1itself and then reconstruct its full capabilities
over a wide range of “user’” actions, including, for example 1n
one embodiment, low-level commands to format the hard
drive, re-installation of an operating system, re-imaging of
the hard drive using an imaging utility, and replacement of the
hard drive. “User” refers to an individual who 1s performing,
these actions and may be acting 1n an authorized or unautho-
rized capacity. Their actions to remove the Agent may be
intentional or accidental.

The mvention protects the authorized user from the acci-
dental removal of the software Agent, while allowing the
legitimate need to disable the Agent (Tor example at end of life
of the computer asset). The mvention prevents an unautho-
rized user from removing the Agent software. The persistent
attributes of the present invention have value 1n asset protec-
tion, data and network security, I'T asset management, soit-
ware deployment, and other types of applications. In the
context of a secure, stealthy device-tracking software appli-
cation, the mnvention 1s of significant value as it makes theft of
a valuable asset much more difficult to conceal, as regardless
ol actions taken by a thief, the software will persist and make
itself available for contacting a remote monitoring center. In
addition, the persistent nature of the software Agent provides
peace ol mind to security personnel, as it provides confidence
that the Agent cannot be accidentally removed. In the context
of a secure asset management application, this 1s of further
value as 1t ensures continuity of tracking an asset over its
whole lifecycle. A key challenge for I'T administrators today
1s the ability to track assets over the whole lifecycle. During
the litecycle devices are frequently transferred from one user
to another, during which they may be re-imaged, or have the
operating system reinstalled or otherwise be subjected to
maintenance procedures that render tracking of the asset dit-

10

15

20

25

30

35

40

45

50

55

60

65

6

ficult, but which 1s made easier by the present invention. In
addition to asset tracking services, other services can be
enabled, supported and/or provided by the persistent and
extensible Agent.

BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the nature and advantages of
the present invention, as well as the preferred mode of use,
reference should be made to the following detailed descrip-
tion read 1n conjunction with the accompanying drawings. In
the following drawings, like reference numerals designate
like or similar parts throughout the drawings.

FIG. 1 1s a schematic diagram depicting representative
communication links including networks by which assest
tracking may be mmplemented in accordance with one
embodiment of the present invention.

FIG. 2 1s a schematic diagram depicting attachment of a
PCI Option ROM to the BIOS, which includes the Persistent
Agent, 1n accordance with one embodiment of the present
ivention.

FIG. 3 1s a schematic diagram depicting the module com-
ponents of the Persistent Agent present in the PCI Option
ROM, 1n accordance with one embodiment of the present
invention.

FIG. 4 1s a schematic flow diagram depicting the Option
ROM loading routine, in accordance with one embodiment of
the present invention.

FIG. 5 1s a schematic tlow diagram depicting the routine
performed by the CLM of the Persistent Agent, 1n accordance
with one embodiment of the present invention.

FIGS. 6a and 65 are schematic tlow diagrams depicting the
routine performed by the Interrupt Handler of the CLM, 1n
accordance with one embodiment of the present invention.

FIG. 7 1s a schematic tlow diagram depicting the routine
performed by the AIM of the Persistent Agent, in accordance
with one embodiment of the present invention.

FIG. 8 1s a schematic flow diagram depicting the Installer
Mode routine of the CDA of the Persistent Agent, in accor-
dance with one embodiment of the present invention.

FIG. 9 1s a schematic flow diagram depicting the Service
Mode routine of the CDA, in accordance with one embodi-
ment of the present invention.

FIG. 10 1s a schematic depiction of the CDA in Application
Mode, 1n accordance with one embodiment of the present
invention.

FIG. 11 1s a schematic depiction of Flash Image Manage-
ment, 1 accordance with one embodiment of the present
ivention.

FIG. 12 1s a schematic depiction of Host Protected Area
Image Management, in accordance with one embodiment of
the present invention.

FIG. 13 1s a schematic depiction of Partition Gap Image
Management, 1n accordance with one embodiment of the
present invention.

FIG. 14 1s a schematic depiction of a communication ses-
s1on between the CDA of the Persistent Agent and the remote
server, 1n accordance with one embodiment of the present
invention.

PR

L1
]

ERRED

DETAILED DESCRIPTION OF THE
EMBODIMENT

The present description 1s of the best presently contem-
plated mode of carrying out the invention. This description 1s
made for the purpose of illustrating the general principles of
the invention and should not be taken 1n a limiting sense. The

US 8,868,933 B2

7

scope of the invention 1s best determined by reference to the
appended claims. The present invention can find utility 1n a
variety ol implementations without departing from the scope
and spirit of the invention, as will be apparent from an under-
standing of the principles that underlie the invention. For 5
purpose of illustrating the features of the persistent Agent of
the present invention, reference 1s made to asset tracking as
one example of the services provided by the Agent, and a
tracking Agent, and data delete as another example of the
services provided by the Agent. It 1s understood that the Agent 10
may be used for other services, such as distribution of soft-
ware and updates, without departing from the scope and spirit
of the present 1nvention.

The detailed descriptions that follow are presented largely
in terms of methods or processes, symbolic representations of 15
operations, functionalities and features of the invention.
These method descriptions and representations are the means
used by those skilled 1n the art to most effectively convey the
substance of their work to others skilled 1n the art. A software
implemented method or process 1s here, and generally, con- 20
ceived to be a self-consistent sequence of steps leading to a
desired result. These steps require physical manipulations of
physical quantities. Often, but not necessarily, these quanti-
ties take the form of electrical or magnetic signals capable of
being stored, transferred, combined, compared, and other- 25
wise manipulated.
Tracking System Overview

Asset tracking function 1s an example of the services that
can be enabled, supported and/or provided by the persistent
Agent of the present invention. Referring to FIG. 1, the asset 30
tracking system 1n accordance with one embodiment of the
present invention mvolves a client/server architecture, which
may comprise the following main components: (a) client
device A consisting of any one of the electromic devices
shown which have been implanted with the Agent. The Agent 35
soltware runs on the client devices for the purpose of report-
ing asset, location and other information, and receiving
instructions from a remote server to program the Agent to
support and execute a desired function. The mmvention pro-
vides the ability of the agent soltware to be more persistentto 40
accidental or deliberate removal and the programmability of
the client from the monitoring server; (b) a communication
link B, such as an information exchange network, which may
include switched communications networks, the Internet, pri-
vate and public intranet, radio networks, satellite networks, 45
and cable networks; and (¢) a host momtoring system C,
which 1nclude a host monitoring server 3 that monitors the
communications between the client device A and the host
monitoring system C, which 1s contacted on a regular basis by
the client devices records information from the client devices. 50
The monitoring server also provides instructions to the client
on what actions to perform, including what actions the client
1s to perform, what data to collect and the clients next sched-
uled call time. The client devices contact the monitoring,
server via the commumnication link B (e.g., an IP connection or 55
via a dial-up telephone connection). The monitoring server
can perform its functions either as a service offered over the
Internet, or as a customer-owned server over a corporate
intranet. The host momitoring system C may include a report-
ing and administration portal, which provides customers, 60
administrators and asset tracking service providers the ability
to view data and manage the functions of the monitoring
server and the client devices. The host monitoring server can
notily customers, designated representative and law enforce-
ment agencies concerning status ol asset monitoring via a 65
number of communication means. Each of these components
will be further elaborated below.

8

Retferring to FIG. 1, usetul client devices A 1n which the
persistent software Agent 1n accordance with the present
invention can be implemented include, but are not limaited to,
general or specific purpose digital processing, information
processing and/or computing devices, which devices may be
standalone devices or a component part of a larger system
(e.g., a mass storage device), portable, handheld or fixed 1n
location. Different types of client devices may be imple-
mented with the software Agent application of the present
invention. For example, the software Agent application of the
present invention may be applied to desktop client computing
devices, portable computing devices (e.g., laptop and note-
book computers), or hand-held devices (e.g., cell phones,
PDAs (personal digital assistants), personal electronics, etc.),
which have the ability to communicate to an external server,
as Turther explained below. The client devices may be selec-
tively operated, activated or configured by a program, routine
and/or a sequence of istructions and/or logic stored 1n the
devices, 1 addition to the operating systems resident 1n the
devices. In short, use of the methods described and suggested
herein 1s not limited to a particular processing configuration.

To facilitate an understanding of the principles, features
and functions of the present invention, they are explained
with reference to its deployments and implementations in
illustrative embodiments. By way of example and not limita-
tion, the present invention 1s described in reference to
examples of deployments and implementations relating to the
context of the Internet and 1n reference to a laptop or notebook
computer as the client device A (computer Al 1s schemati-
cally represented as a desktop device, but may instead com-
prise a portable computing device). It will be understood by
one of ordinary skill in the art that the application of this
invention to any currently existing of future global network 1s
contemplated herein. Further, although the Internet aspect of
this 1nvention 1s described and illustrated with respect to
client computer Al 1t should be understood that the Internet
application 1s readily applicable to other client devices with-
out departing from the scope and spirit of the present inven-
tion.

FIG. 1 1s a schematic representation of the communication
links B in the form of information exchange networks 1n
which the present invention may be deployed for asset track-
ing. The information exchange network accessed by the asset
tracking Agent application in accordance with the present
invention may involve, without limitation, distributed infor-
mation exchange networks, such as public and private com-
puter networks (e.g., Internet, Intranet, WAN, LAN, etc.),
value-added networks, communications networks (e.g.,
wired or wireless networks), broadcast networks, cable net-
works, radio networks, and a homogeneous or heterogeneous
combination of such networks. As will be appreciated by
those skilled 1n the art, the networks include both hardware
and software and can be viewed as either, or both, according
to which description 1s most helptul for a particular purpose.
For example, the network can be described as a set of hard-
ware nodes that can be interconnected by a communications
facility, or alternatively, as the communications facility, or
alternatively, as the communications facility itself with or
without the nodes. It will be further appreciated that the line
between hardware, firmware and software 1s not always
sharp, 1t being understood by those skilled 1n the art that such
networks and communications facility, and the components
ol the persistent agent technology platiorm, involve soitware,
firmware and hardware aspects.

The Internet 1s an example of an information exchange
network including a computer network in which the present
invention may be implemented. Details of various hardware

US 8,868,933 B2

9

and software components comprising the Internet network
(such as servers, routers, gateways, etc.) are not shown, as
they are well known 1n the art. Further, it 1s understood that
access to the Internet by the user/client devices and servers
may be via any suitable transmission medium L, such as
coaxial cable, telephone wire, wireless RF links, or the like,
and tools such as browser implemented therein. Communi-
cation between the servers and the clients takes place by
means of an established protocol. As will be noted below, the
persistent asset tracking Agent application of the present
invention may be configured 1n or as one of the clients, which
can communicate with one of the servers over the information
exchange network. This invention works 1n conjunction with
other existing technologies, which are not detailed here, as 1t
1s well known 1n the art and to avoid obscuring the present
invention. Specifically, for example, methods currently exist
involving the Internet, web based tools and communication,
and related methods and protocols.

Referring to FIG. 1, the host monitoring system C may
simply be a computer (e.g., a server 3) that 1s configured to
exchange data with client devices A that have an Agent
installed thereon, via one or more (concurrently or in parallel)
of the communication links B. The host monitoring system C
includes routines for identifying and filtering external user
access (C1). The host monitoring system C also communi-
cates (C3) directly or indirectly with the owners and/or rep-
resentatives of the tracked client devices A concerning infor-
mation related to the tracked devices A (e.g., network location
information), via the reporting and administration portal. For
example, the host monitoring system C may communicate by
email, fax, paging, phone, etc. to the owner of a tracked
device, his designated representative, a company designated
department or representative, a stalfed momitoring service
station, law enforcement agency, etc. Alternatively, the host
monitoring system C may 1tself be a staffed monitoring ser-
vice station, or part of a law enforcement agency. The host
monitoring system C and/or downstream target locations
(c.g., statled monitoring service station) may maintain an
inventory list of the tracked assets, or the lost/stolen status of
the tracked assets. Though only one host monitoring system C
1s shown 1n FIG. 1, a plurality of host monitoring systems C
may be distributed across the communication networks, for
example 1n different geographic regions.

One of the important functions of the Agent 1s to contact the
host monitoring system C to report the i1dentity, location,
and/or other information relating to its associated client
device A. According to one embodiment of the invention,
cach client device A 1s associated with a unique 1dentification,
which may be part of the information delivered by the client
device A to the host monitoring station C. The unique 1den-
tification can be 1n the form of an Electronic Serial Number
(ESN), Media Access Control (MAC) number, Internet host
name/IP address, an owner/user specified identification, or
other numeric, alpha or alphanumeric information that rep-
resents, 1dentifies and/or allows identification of the client
device, and further information such as date and time, which
might present further basis for determination or validation of
the actual or virtual geographical location of the Agent and its
identification.

The general concept of using a stealth Agent to track assets
and/or recover stolen or lost devices A had been disclosed 1n
the patents assigned to Absolute Software Corporation, the
assignee of the present invention. The Agent has to determine
the appropriate time for it to call the host monitoring system
C. If 1s suffice to mention briefly here that once the Agent 1s
installed and running 1t will either periodically (e.g. every N
hours), or after specified periods have elapsed (e.g. from

10

15

20

25

30

35

40

45

50

55

60

65

10

system or user logon), or after device system boot, or upon the
occurrence of certain pre-determined conditions, or triggered
by some 1nternal or external events such as hardware recon-
figuration, report its identity and/or location via the commu-
nication link B to the host monitoring system C, without user
intervention to initiate the communication process. The
Agent may also concurrently report 1ts 1dentity and location
via two or more available communication links B to the host
monitoring system C. The location of the Agent, hence the
tracked device, may be determine, for example, by a tracer-
oute routine to obtain a listing of all IP routers used to enable
communication between the client device A and host moni-
toring system C via the Internet.

All location and asset related data transmitted to the moni-
toring system C may be kept in a central repository and can be
accessed 24x7 by authorized administrators via secure web-
based or network based console. In one embodiment, when
the agent transiers location and asset data, the monitoring
system C sends and programs the 1nstructions for the next set
of tasks, and the next scheduled call time and date to the
Agent. The monitoring system C archives all Agent transmis-
sions, providing a current and accurate audit trail on each
computer (C2). A comprehensive computer asset tracking
and mmventory solution will capture this information on sys-
tems connected locally to the corporate network, as well as on
remote and mobile systems connecting remotely via IP or
dial-up. In addition, information needs to be captured on a
regular basis to ensure the most up-to-date view of the assets
1s being provided.

As will be further explained below, the tracking Agent 1s
persistent with high resistance to tampering, and the Agent
may be configured to remain transparent to an unauthorized
user. The Agent, in order to remain hidden to the user, will not
interfere with any running applications unless designed to
interiere. The novel features, functions and operations of the
Agent 1n accordance with the present mvention will be dis-
cussed more fully below.

Overview of Architecture of Persistent Agent Platform

I'T administrators need the ability to consistently track all
computer assets throughout their entire life cycle. This
includes remote and mobile computers that operate outside
the LAN. Asset tracking agents need to be installed once at the
beginning of a computers life cycle and communicate regu-
larly until the computer 1s retired. During its life cycle a
computer will undergo many user, hardware and software
changes and it 1s critical that the tracking agent be persistent
and able to report changes in these three areas. The persistent
Agent in accordance with the present invention can report the
original identification of the PC asset and its status through-
out the PCs lifecycle, regardless of, for example, MAC and
break/fix operations, even 1i the hard drive has been reformat-
ted or the operating system reinstalled or tampered with. The
persistent Agent 1s designed to protect 1tself and will survive
any unauthorized removal attempts. This persistence feature
1s critical i order to remain connected to PC assets 1n case of
theit and to ensure accurate and secure asset tracking.

The persistent Agent 1s a low-level undetectable software
client that resides on the host computer. The Agent 1s persis-
tent software and extremely difficult to remove. The Agent
incorporates selif-healing technology that functions to rebuild
the agent software installation even 1f the agent service 1s
deleted by conventional means. The agent will survive an
operating system installation, hard drive format, and even a
hard drive replacement. This survivability 1s critical to the
success ol asset tracking and thett recovery (and other ser-
vices thatthe Agent may also enable, support and/or provide).
The self-healing function 1s not resident within the file system

US 8,868,933 B2

11

and 1s more difficult to detect and remove than traditional
soltware. The persistent and self-healing portion of the soft-
ware 1s dificult to remove because it 1s stealthy. The software
1s normally removed only by an authorized IT administrator
with the correct password. The self-healing feature will func-
tion to repair an Agent installation 1n newly formatted and
installed operating systems as well as newly imaged systems.

In another aspect of the present invention, the Agent 1s
programmable to extend 1ts functions beyond what was 1ni-
tially programmed. The Agent communicates with a remoter
server, wherein the remoter server sends and programs the
Agent by providing the Agent with instructions for next set of
tasks.

The Agent may be implemented in the hardware, firmware
or software of any electronic device. Alternatively, the Agent
may be implemented 1n any component of a device, as with an
clectronic component such as the DSP 1n amodem or the CPU
in a computer. Furthermore, the functionality of the Agent
may be implemented 1n the circuitry of any hardware device
capable of establishing a communication link through send-
ing and/or recerving packets of data. For example, the Agent
may be embodied in non-volatile memory (such as ROM
BIOS, ROM, Flash ROM, EPROM, EEPROM, or the like) of
the electronic device, a software program, a micro-code pro-
gram, a digital signal processor (“DSP”’) program or a built-in
function of the operating system.

In accordance with one embodiment of the present inven-
tion, the persistent tracking Agent (hereinaiter also referred to
as a “Persistent Agent”) 1s embodied 1n BIOS (or 1ts function-
ally equivalent system). As 1s known 1n the art, BIOS 1s the
startup code that always executes on system power up or reset.
This can be microcode embedded into the processing unit or
software (instructions) starting from a fixed location 1n
memory space. These mstructions handles startup operations
such as the Power-On Self-Test (POST) and low-level control
for hardware, such as disk drives, keyboard, and monaitor,
independent of and typically before the booting of the oper-
ating system resident on the device. In one embodiment, the
Persistent Agent 1s embodied 1n firmware, such as a read-only
memory (ROM), in the client device A, such as personal
computers. When BIOS 1s embodied in a chip, it includes a set
ol instructions encoded 1 ROM. It 1s understood that all
references to BIOS hereunder 1s not limited to ROM bases
BIOS.

Popular brands of BIOS chips on motherboards sold today
include Phoenix Technologies, Intel, IBM and American
Megatrends, Inc. Some system components have their own
BIOS chip, whose 1nstructions are also read into the device’s
memory at startup. The BIOS on a hard disk controller, for
example, stores a table of tracks and sectors on the drive.
Unlike the BIOS based Agent disclosed in Absolute Software
Corporation’s earlier patents, the present ivention presents
an improvement, that includes the use of a BIOS-based loader
tor the Agent. The BIOS-based loader makes the Agent com-
ponents more persistent, and hence 1t 1s more difficult to
defeat the asset tracking or other servicing function. The
BIOS-based loader also eliminates the need to reverse the
boot order on the machine and thus removes a step in the
manufacturing process. A BIOS-based loader also reduces
potential compatibility 1ssues with products such as anti-virus
scanners, Tull-disk encryption and other utilities that read or
modily the operating system loader in the Master Boot
Record (MBR).

In accordance with one embodiment of the present mnven-
tion, the Persistent Agent 10 1s mnitially stored 1n an Option
ROM, such as a an Option ROM based on peripheral compo-
nent intertace bus—PCI Option ROM 12 attached to the Core

[,

10

15

20

25

30

35

40

45

50

55

60

65

12

BIOS Flash Image 13, as depicted 1in FIG. 2. There may be
additional Option ROMs attached (not shown), which sup-
ports other functions not related to the Persistent Agent. The
Persistent Agent 10 comprises multiple modules. The three
main modules are the “Computrace” Loader Module (CLM)
14, the Adaptive Installer Module (AIM) 16, and the Com-
munications Driver Agent (CDA) 18, as depicted 1n FIG. 3.

The small (can be approximately 22 Kb—compressed)
PCI Option ROM 12 containing the three modules of Persis-
tence Agent 10 are bound to the standard core tlash image and
loaded 1nto protected memory along with the BIOS and other
Option ROMs during BIOS POST. The small PCI Option
ROM 1s recognized by POST and loaded into read/write
shadow memory along with the BIOS and other Option
ROMSs during BIOS POST. This configuration provides a
modular architecture that will enable the security enhancing
features while minimizing the development effort and num-
ber of interface points 1n the core BIOS which must be re-
qualified.

The CLM incorporates the PCI (1n the case of a PC device),
Image Management and Execution Environment functions. It
1s responsible for the interface to the BIOS, locating and
unpacking the AIM, resizing the PCI Option ROM to 1ts final
s1ze, and executing the AIM within the proper context on the
system. The AIM accesses the hard drive, detects active oper-
ating systems, and adapts the mini CDA to the discovered
installations. The mini1 CDA 1s the communications driver. It
includes support for the HTTP protocol, an application layer
for communicating with the monitoring server, a service layer
for interfacing to an OS and an adaptive layer for interfacing
with the AIM.

The mim1 CDA 1s responsible for checking whether the
tull-function CDA 1s available 1n the computer’s file system
to run as a service when the operating system 1s loaded. If the
full-function CDA 1s not available, the min1 CDA will imitiate
download of the full-function CDA from the monitoring
server. Once the full function CDA 1s present, it will fre-
quently check for newer versions of itself on the monitoring
server, and 1f available, will replace 1tself with a new version.

These and other embodiments of the various modules will
be discussed more fully below.

BIOS POST Sequence and Option ROM Load Process

The Option ROM load process 20 1s depicted 1n the tlow
diagram of FIG. 4. At boot up of the client device A 1n which
the Persistent Agent 10 has been deployed, the BIOS POST
process performs a self-test and chipset configuration routine
21, and reaches a point where the bus 1s scanned at 22 for
Option ROMSs that support functions on the motherboard or
on extension cards. At this point, the PCI Option ROM 12
containing the Persistence Agent 10 i1s loaded into low
memory (e.g., a RAM) at 22 and its mitialization vector
(CLM 14, as discussed below) 1s called at 23. The 1nitializa-
tion routine determines the status of the function to be sup-
ported and its final image size. Subsequently at 25 and 26, the
BIOS POST process then completes the Option ROM scan
and calculates the final locations of each Option ROM whose
function 1s present. Each PCI Option ROM 1s then relocated
and 1ts completion vector 1s called, including the Persistent
Agent enabled PCI Option ROM 12. (In certain Phoenix
BIOS, for example, the PCI Option ROMs are not relocated,
but simply shrink to {it the final size declared in the header
before returning from the iitialization vector.) After all
Option ROMs have been relocated, the BIOS memory 1is
write-protected at 27. The boot-devices are called in turn until
an operating system 1s successtully started at 28. At this point,
both the device operating system and the Agent would be
running simultaneously.

US 8,868,933 B2

13

PCI Option ROM
A. Loader Module CLM

The CLM 14 1s responsible for setting up a temporary
Execution Environment for the AIM 16, loading and decom-
pressing the AIM 16 and calling it in an appropriate context.
The last “act” of the CLLM 14 1s to shrink to a minimum size
(2K) and return execution to POST. The CLM only “fails 1f
the AIM 16 1s not found or mvalid.

The CLLM 14 1s the interface to POST, or the “front-end” of
the PCI Option ROM 12. The PCI Option ROM header 1s in
the CLLM 14 and 1ts entry points are advertised according to
the standard 1n this header. The CLM 14 provides two func-
tion points for integration with the BIOS POST.

1. ROM header and PCI Option ROM header pair

2. Interrupt Handler

These and other functions of various components of the
PCI Option ROM will be described below 1n reference to an
IBM BIOS, for example installed 1in the IBM Model T43
notebook computer.

1. ROM Entry Point
The mitial interface 1s presented during PCI Option ROM

enumeration by the BIOS. This interface 1s a standard legacy
ROM header and PCI Option ROM header pair. For example,

in reference to a Phoenix BIOS, a PCI VendorID 01 1917h and
the device ID 1234h may be set. As noted above, when the
BIOS POST process scans the bus for Option ROMs that
support functions on the motherboard or on extension cards,
the whole PCI Option ROM 12 1s loaded and the mitialization
vector of the CLM 14 1s called. The Option ROM loads and
executes a compressed .COM application. The ROM entry
point 1s defined by the START_SEG label. The START_SEG
Segment contains the ROM header and 1ts link to the PCI
Option ROM header. The Option ROM 1s mitialized by a FAR
CALL to offset 3 1n the Option ROM. The jump instruction
chain here passes control to the OptRomProc.

Referring to FI1G. 5, the routine 30 undertaken by the PCI

Option ROM CLM 14 may be summarized as follows:

a. Find the BIOS POST Memory Manager at 31.

b. Allocate a control STUB_BLOCK at 32 (e.g., 2K for
interrupt handling and application execution).

c. Allocate extended memory for the COMPRESSED
application and a backup of application memory (e.g.,
64K) at 33.

d. Allocate a block of application memory (e.g., 64K) in
conventional memory for the DECOMPRESSED
execution of the application at 34.

¢. I disk services are available at 35 (as determined by
count at 40:75 h; number of hard disks), then execute
application immediately at 36, then proceed to free
memory at 39 and shrink Option ROM to Zero at 40.

f. Else 1f Video vector (int 10 h) 1s below the XBDA
(40:0Eh) at 37, then hook Int 15h. to STUB_BLOCK, at
38, and Shink Option ROM to Zero at 40.

g. Else nothing to hook and nothing to do—Failed! Free
memory at 39, and shrink Option ROM to Zero at 40.

2. Interrupt Handler

The second intertace 1s an Interrupt Handler. This executes
after the 1nitial load and execution of the mnitialization proce-
dure of the PCI Option ROM from memory allocated from the
BIOS POST memory manager. This interface executes first
on int 15h and then on an alternate trigger. Int 19h 1s the
preferred alternate trigger and the default. The iterrupt han-
dler1s only activated 11 BIOS Disk Services (int 13h) 1s not yet
available during mmitialization of the PCI Option ROM. Int
19h 1s the preferred trigger method because 1n some cases
there 1s no Int 13h 1ssued by the BIOS after the last int
15h/func 9100h. Another 1ssue 1s that physical drive 80h by

5

10

15

20

25

30

35

40

45

50

55

60

65

14

not be consistent with physical drive 80h at Int 19h until
shortly before Int 19h. ComFileStub contains the main inter-
rupt hook entry point.

Retferring to FIGS. 6a and 65, the process 41 undertaken by
the Interrupt handler may be summarized as follows:

a. On each it 15h trigger at 42, function 9100h (hard disk
IRQ complete, this indicates that INT 13h 1s in use.)

b. Check hard disk services available at 43 (count 40:75h).

¢. And Video vector above or equal to the XBDA (40:0Eh;
this indicates that SETUP phase of POST 1s complete).

d. Chain 11 not yet ready at 44.

¢. Restore Int 15h hook and hook a trigger Int xxh at 45

(_ TRIGGER_INTNUM setting=Int 13h or Int 19h) to
wait for the next Int xxh.

f. On the next trigger Int xxh (Int 13h or Int 19h) at 46,
restore trigger Int xxh at (Int 13h or Int 19h).

g. Switch stacks at 48.

h. Backup copy of DECOMPRESSED appmem to
extended memory BACKUP_BLOCK at 49.

1. Copy COMPRESSED application to DECOM-

PRESSED appmem block at 50.

1. Call application and restore contents of DECOM-
PRESSED appmem from extended memory BACKUP_
BLOCK at 51.

k. Switch stacks back at 52.

1. Chain to complete the intercepted trigger Int xxh call at
53.

B. Agent Installer Module (AIM)

The AIM 16 1s designed to be loaded under the execution
context set up by the CLM 14. Referring to FIG. 7, the routine
54 undertaken by AIM 16 includes the following steps. When
executed, the AIM 16 scans the partition table to find the
active partition at 55. On the active partition 1t looks for the
operating system (OS) system directories or the configuration
files at 56, which point to them and then creates and installs
the installer mode instance of the Communication Driver
Agent CDA at 57. The installation mechanism 1s specific and
unique to each OS, and AIM 16 uses standard OS 1nstallation
mechanisms.

C. Communications Driver Agent (CDA)

The CDA 18 exists in two forms, a min1 CDA and a full-
function CDA. In one embodiment, the mini-CDA resides 1n
the PCI Option ROM 12. The function of the mini1 CDA 1s to
determine whether a full-function and/or current version
CDA 1s 1nstalled and functioning on the device, and 11 not, to
load the full-function CDA across the Internet from the host
monitoring server C (FIG. 1). The tull-function CDA 1s then
responsible for all communications between the device and
the host monitoring server C.

Referring to FIG. 8, the min1 CDA first runs (via AIM 16)
an installer mode 38, in which the primary function of the
min1 CDA 1s to register as an OS service. The installer mode
instance of the agent creates another instance of itself at 59
and registers the copy with the Service Manager at under
2000/XP, for example, at 60. The executable then cleans up
the 1nstaller copy of 1tself and exits. It runs in Installer mode
only once, as the full-function CDA takes over the normal
operations of the CDA from that point.

Referring to FIG. 9, on subsequent start of the OS, the
service mode nstance of the mim1 CDA 1s executed as a
Service under 2000/XP, for example. The Service sets up a
service manager environment at 62 and at an approprate time
(after waiting at 63), launches an instance of itself as an
application at 64. The application mode 1s the normal mode of
operation of the mini-CDA. The Agent 1s now 1n “active”
mode.

US 8,868,933 B2

15

If the current full-function CDA 1s not found 1n the device,
the mini1 CDA application initiates communications with the
host monitoring server C using, for example, the HT'TP pro-
tocol by default, as depicted 1n FIG. 10. Other protocols are
supported by additional modules are uploaded from the host
monitoring server C to the Agent. The host momitoring server
C performs functions such as identifying the Agent, storing
monitoring history, configuration and software updates. The
host monitoring server C conducts a session with the mini
CDA to activate and 1nstall a full version of the CDA, disable
the mini-CDA (e.g., at end of life of the device, or for dis-
abling self healing function so that 1t can be upgraded to a
newer version), update the Agent, or configure the Agent, as
required for that platform. The communications between the
client device A and the server C via communication link B are
depicted 1 FIG. 10 1in accordance with one embodiment of
the present invention. For example, 1f the mim1 CDA provides
identification or type of BIOS or device platiorm to the server
C, a copy of BIOS or platform specific full-function CDA or
its updates can be downloaded to the device A.

As noted before in reference to FIG. 1, the general concept
of using a stealth Agent to track devices and/or recovery
stolen or lost devices A had been disclosed in the patents
assigned to Absolute Software Corporation, the assignee of
the present invention. The application level functionality of
the device tracking and communication functions of the full-
tfunction CDA can be similar to the functions of the stealth
agent earlier described and patented by the assignee of the
present invention (which patents have been incorporated by
reference herein) and/or the AbsoluteTrack asset tracking
product developed by the assignee of the present invention.

Generally, 1n one embodiment of the Internet application,
which can run alone or concurrently with or applications
based on other communication links B (e.g., PSTN), the
Agent 1mitiates a call to the host at predetermined, random,
event based or deferred intervals. According to one embodi-
ment, 1n 1ts “active” mode the Agent calls the host every
predetermined number of hours. The Agent uses the current
time and the unique Agent identification to encode an Internet
host name. In one embodiment, the Agent then forms a DNS
request using an encoded Internet host name. The Agent
sends this DNS request to the host through the Internet. If the
agent’s attempt to send the DNS request to the Internet times
out after a predetermined time period has elapsed, the Agent
will sleep for a predetermined period of time, e.g., one
minute, and then repeat the call. If the call fails due to another
error (such as the absence of Winsock facilities which enable
communication with the Internet, and/or the failure of the
computer to be configured for TCP/IP communication) then
the Agent will repeat the cycle several hours later. In this way,
the Agent inherently checks for the existence of an Internet
connection.

After sending 1ts DNS request, the Agent waits for a
response. Upon receiving a valid response from the host, the
IP address 1s extracted from the response and compared
against a reference IP address. For example, the reference IP

address may be set as “204.174.10.1”. I the extracted IP
address equals “204.174.10.1” then the Agent’s mode 1is
changed from “active” to “alert” on the Internet side. The host
will send this IP address, for example, when 1t, or the operator
at the host, has determined that the Agent i1dentification
matches one of the entries on a list of reported lost or stolen
computers stored at the host. If the IP address extracted from
the host response does not equal “204.174.10.1” then the
Agent remains 1n active mode and does not call the host for
another four hours. However, when the Agent goes into
“alert” mode 1n the Internet application, the Agent 1nitiates a

10

15

20

25

30

35

40

45

50

55

60

65

16

traceroute routine which provides the host with the Internet
communication links that were used to connect the client
computer to the host. These Internet communication links
will assist the host system 1n tracking the client computer. The
IP address of the source of the DNS query 1s sent to the host
within the DNS query. However, if the source of the query 1s
transmitted through a “proxy” server, then the IP address of
the client computer (which may not be unique since it may not
have been assigned by the InterNIC) will likely be msutficient
to track the location of the client computer. In such a scenario,
it 1s necessary to determine the addresses of other IP routers
that were accessed to enable communication between the
client and the host. These addresses and the times that they
were accessed are compared with internal logs of the proxy
server that record 1ts clients’ Internet access history. In this
way, the client can be uniquely 1dentified and located. Addi-
tionally, the transfer of the Internet application into “alert™
mode 1s a condition that triggers the transier of the other
available communication applications to “alert” mode.
CDA—Server Communication
A. Extensible Protocol

Deploying the Persistence Agent successiully in BIOS, for
example, makes heavy use of an extensibility designed into
the communications protocol. Without this extensibility the
Agent would be larger and require frequent updates to add or
change functionality. Such updates are neither practical nor
economical, since the BIOS 1s programmed into the flash
EEPROM of the platform and special tools (most often
requiring user interaction) must be used to update the BIOS.
Also, imntensive testing 1s performed by the OEM on the BIOS
since 1ts integrity 1s critical to the operation of the computer.
The key elements of the extensible protocol are:

1) A method to read and write Agent’s memory space

2) A method to allocate memory

3) A method to free memory

4) A method to load an external module

5) A method to determine a procedure address

6) A method to call a procedure
The Agent’s protocol 1s designed to provide these mecha-
nisms.

The format of a read packet 1S:
IADDRESSINUMBER_OF_BYTES
The format of a write packet 1S:

IADDRESSINUMBER_OF_BYTESIDATA

The communications protocol distinguishes a read packet by
determining that no DATA 1s contained 1n the packet. If there
1s DATA, then 1t 1s a write. This address based protocol 1s the
basis of the extensibility design.

The general sequence of steps 1n a communication session,
based on the extensible protocol, between the client device A
and the server C via communication link B 1s schematically
depicted i FIG. 14 1 accordance with one embodiment of
the present invention. Examples of specific transactions
handled by a communication session 1s further disclosed
below.

A typical session begins with a connection sequence such
that:

1) The client connects

2) The server responds with a special read from address

Ox T Ox Attt 4

3) The client replies with the address of its session handle

The handle structure contains important information like
the version of the client, the version of the supporting OS and
the Command Packet. The client interprets “writes™ to the
Command Packet as “special” and will call the Command-
PacketProcessor() function when the Command Packet 1s
written. The CommandPacketProcessor() function takes the

US 8,868,933 B2

17

arguments: function code, parameter address, number of
parameters, and the result address. The mimimum set of func-
tion codes which must be implemented are:
CMD_FUNC_CCALL (Call *C’ function)
CMD_FUNC_STDCALL (Call a STDCALL function)
CMD_GETMH (Get Module Handle)

CMD_GETPA (Get Procedure Address)

C

C

MD_ALLOC (Allocate Memory)
MD_FREE (Free Memory)

Other function codes which may be implemented are for
chaining Command Packets together to improve efficiency:

CMD_ENDC (End Chain)

CMD_IF (Conditional Branch)
CMD_GOTO (Unconditional Branch)

This small library of commands can be strung together in
packets to accomplish any management task. The critical
management tasks are:

1) CreateFile

2) Load as Library of functions, or as executable

3) Call procedure in the operating system or from created

file

4) Allocate and Free Memory 1n the context of the Agent
B. Transactions

The following section describes the communication
between the Agent and the remote (e.g., monitoring) server
(also known as CTSRV). Note that each item described rep-
resents one transaction (message pair between the client and
server). Some transactions occur on every agent call, others
depend on the service implemented and others are done on
one call only as a result of a flag set by maintenance or
recovery personnel. Below are tables of typical communica-
tions sessions between the server and the Agent.
Basic communication (Every Agent Call)

Action Packets
Initialize communication, get client handle 1
Read client flags 2,3
Read client settings 4,5
Lock agent 6,7
Get address of TAPI info structure on the client 8,0
Get address of local IP from TAPI info structure 10,11
Receive client local IP info 12,13
Request for serial #, version, client time, next call date, next call 14-17
date IP, last call date, last call date IP and OEM CTID

Unlock agent 18,19
Lock agent 20, 21
Send next call date 22,23
Send last call date 24, 25
Set flag call successtul on the client. 26,27

Call with Basic Asset Tracking (Every Call-—if client has
Subscribed to such Tracking Services with the Monitoring
Service Provider) Using AT1 DLL on Client

AT1 data (for subscribers to asset tracking/monitoring ser-
vices) 1s retrieved. Note that this 1s a sub-set of the data
collected by the AT2 DLL. Fither the AT1 or AT2 DLL will be

executed on the client, never both.

Action Packets
Basic Agent Call as Described Above 1-27
Unlock agent 28, 29
Allocate one big chunk of memory on the client 30, 31
Write new recelrve bufier size to client CTHANDLE 32, 33
Set new recerve address to client 34, 35
Write new transmit buffer size to client 36, 37
Read current transmit buffer address from client 37, 39

5

10

15

20

25

30

35

40

45

50

55

60

65

18

-continued
Action Packets
Write offset to the new transmuit buffer 40-43
Set new transmit buffer address to client CTHANDLE 44, 45
Read client’s tinfo structure 47, 48
Set client window size 49
Get Kernel32 procedure addresses 50-59
Call Kernel32 GetSystemDirectory function on client 60-63
Get client’s system folder path 64, 65
Checking encryption DLL timestamp, 66-71
call Kernel32 FindFirstFile function on client
Call Kernel32 FindClose function on client 72-75
Load WCEPRV.DLL on client 76-79
Set encryption communication, read old transmit address 80, 81
Read old recerve address 82, &3
Call WceSet on client 84-91
Setup encryption key on client, call WeeStartup 92-99
Get WceeSend procedure address 100-103
Get WceRecv procedure address 104-107
Set new transmit address 108, 109
Set new receive address 110, 111
Enable encryption on client, call WceEnable 112-119
Check transmit(WceSend) procedure address 120-123
Check AT-I on client, call Kernel32 FindFirstFile on client 124-129
Call Kernel32 FindClose on client 130-133
Load AT DLL on client, call Kernel32 LoadLibrary function 134-137
Call GetHWInfo on client 138-147
Call GetEmailAddress on client 148-155
Read AT-I data 156, 157
Unload AT DLL on client, call Kernel32 FreeLibrary function 158-161
Reset encryption, call Free WceEnable on client 162-165
Write old transmit address 166, 167
Write old receive address 168, 169
Free WCEPRV.DLL on client 170-173
Set flag call successtul 174-185
Send close to agent 186, 187

Call with Advanced Asset Tracking (Every Call-—if Client

has Purchased AbsoluteTrack or ComputraceComplete prod-
ucts) Using AT2 DLL On Client

AT-II data (e.g., for Absolutelrack & ComputraceCom-
plete customers) 1s retrieved. Note that this 1s a super-set of

the data collected by the AT1 DLL. Fither the AT1 or AT2
DLL will be executed on the client, never both.

Action Packets
Basic Agent Call as Described Above 1-27
Unlock agent 28,29
Allocate one big chunk of memory on the client 30,31
Write new recerve butter size to client CTHANDLE 32,33
Set new recerve address to client 34, 35
Write new transmit buffer size to client 36, 37
Read current transmit buffer address from client 37, 39
Write offset to the new transmuit buffer 40-43
Set new transmit buffer address to client CTHANDLE 44, 45
Read client’s tinfo structure 47,48
Set client window size 49
Get Kernel32 procedure addresses 50-39
Call Kernel32 GetSystemDirectory function on client 60-63
Get client’s system folder path 64, 65
Checking encryption DLL timestamp, 66-71
call Kernel32 FindFirstFile function on client

Call Kernel32 FindClose function on client 72-75
Load WCEPRV.DLL on client 76-79
Set encryption communication, read old transmit address 80, 81
Read old receive address 82, 83
Call WceSet on client 84-91
Setup encryption key on client, call WceStartup 92-99
Get WceeSend procedure address 100-103
Get WceeRecv procedure address 104-107
Set new transmit address 108, 109
Set new recerve address 110,111
Enable encryption on client, call WceEnable 112-119
Check transmit (WceSend) procedure address 120-123

19

US 8,868,933 B2

20

-continued -continued
Action Packets Action Packets
GetHWInfoll, check diag?.dll time stamp. Call Kernel32 124-129 Call Kernel32 CreateFile on client 70-73
FindFirstFile on client > Copy NtAgent to client 74-917
Call Kernel32 FindClose on client 130-133 Call Kernel32 CloseHandle on client 918-921
Load diag2.dll on client 134-137 Copy upgrd.exe to client 921-951
Call GetHWInfo on client 138-147 Execute Upgrd.exe on client, get address of client tapi 952,955
Call GetHWInfoll on client 148-155 info structure which contains service token
Read AT-II result 156, 157 Call Advapi132 CreateProcessAsUser function on client, 956-969
Call EnumSWlnstallations on client 158-166 10 it restart agent and session is finished
Allocate necessary memory on client 167, 168
Send SW CRC to client 169, 170
Ea”dGetSmeO on client ;;;g Basic Call AND Retrieve Make, Model & Serial Number
ead resu 179-1 :
Call EnumAllPrinters on client 190-197 (OHE:-Off Based On Tech Support ACUOH)
Allocate necessary memory on client 198,199 15 Function retrieves make, model and serial number from
Call GetPrinterInfo on client 200-207 client and Change hoot order.
Read result 208, 209
Call GetEmailAddress on client 210-217
Read AT-I result 218,219
Call EnumAllAccounts on client 220-227 Action Packets
Allocate necessary memory on client 228,229 0
Call GetAllEmailAddresses on client 230-237 Basic Agent Call as Described Above 1-27
Read result 238, 239 Unlock client 28,29
Free AT-1I DIL.L on client 240-243 Init call environment, allocate one big chunk of memory on 30, 31
Check AT-1I on client, 244-249 the client
call Kernel3? FindFirstFile on client Write new recerve buffer size to client CTHANDLE 32,33
Call Kernel32 FindClose on client 250-253 Set new receive address to client 34, 35
GetregSW, load diag2.dll on client 154-257 25 Write new transmit buffer size to client 36, 37
Call EnumRegSWlnstallations on client J258-265 Read current transmit buffer address from client 37,39
Allocate necessary Mmemory on client 266: 267 Write offset to the new transmit buffer 40-43
Write CRC to client 268, 269 Set new transmit buffer address to client CTHANDLE 44, 45
Call GetRegSWInfo on client 270-277 Read client’s tinfo structure 47,48
Read result 278,279 Set client window size 49
Free AT-1I DIL.L on client 280-283 30 Get Kernel32 procedure addresses 50-59
Check AT-II on client, call Kernel32 FindFirstFile on client 284-290 Delete file C:\\DMIL.TXT on the client, call 60-63
Call Kernel32 FindClose on client 290-293 Kernel32 DeleteFile function
Load diag?.dll on client 204-297 Call Kernel32 GetlLastError function on client 64-67
Copy search pattern to client 298, 299 Call Kernel32 GetSystemDirectory on client 68-71
Allocate necessary memory on client 300, 301 Read result from client 712,73
Copy SW license info header to client 302, 303 35 Copy ctsetup.ini to client 714-125
Call GetSW LicenseInfoPattern on client 304-313 Run ESN specific App, Call Kernel32 GetSystemDirectory 126-129
Read result 314-317 function on client
Free AT-II DLL on client 318-321 Read result from client 130, 131
Reset eﬂgryptigﬂ? call Free WceFEnable on client 322375 Check time stamp of dmiinfo.exe on client. Call Kernel32 132-137
Write old transmit address 326,327 FindFirstFile function
Write old receive address 328,329 40 Copy dminfo.exe to client 138-421
Free WCEPRV.DILL on client 330-333 Execute dmiinfo.exe on client 422-439
Set agent flag call successful 334-345 Close process handle on client. Call Kernel32 CloseHandle 440-443
Send close to agent 346, 347 function
Close thread handle on client. Call Kernel32 CloseHandle 444-447
function
Basic Call AND Upgrade Agent Version Remotely (One-Off Call Kernel32 GetLastError on client | 448-451
. 45 Delete dmiinfo.exe on client, call Kernel32 DeleteFile 452-455
Based on Tech Support Action) ot
unction
Check client agent version and compare with version on Copy C:\DMLTXT from client, open file, call Kernel32 456-459
the server. It client version 1s lower then perform remote CreateFile function |
u ade Call Kernel32 GetFileSize on client 460-463
pet ' Calling Kernel32 ReadFile on client in the loop 464-471
50 Call Kernel32 CloseHandle on client 472-475
Delete C:\\DMILTXT on client 476-479
Action Packets Delete CTSETUP.INI on client 480-483
Set flag call successtul 484-495
Basic Agent Call as Described Above 1-27 Send close to agent 496, 497
Unlock client 28,29
Init call environment, allocate one big chunk of memory on 30, 31 55
the client | | | C. The Application Module’s Activation Process
Write new receive butter size to client CTHANDLE 32,33 o _ o _ _
Set new receive address to client 34, 35 The activation process links the Application agent identity
Write new transmit buffer size to client 36,37 to a customer account and 1nstalls the Persistent Agent mod-
Real,d current transmit buffer ac:lldress from client 37,39 ule. This process is described as follows:
Write offset to the new transmuit buffer 40-43 60
Set new transmit buffer address to client CTHANDLE 44 45 The AppllCEl’[lOIl Agent connects
Read client’s tinfo structure 47, 48 — vy eqe :
Set client window size 40 T'he Server uses the extensibility features in the protocol to
Get Kernel32 procedure addresses 50-59 send down and inventory DLL to identily the com-
Call Kernel32 GetSystemDirectory function on client 60-63 puter—this DI, ga‘[hers attributes such as the BIOS,
Get client’s system folder path | 04, 65 o5 chassis and hard-drive serial numbers.
Copy NTAgent to client. Call Kernel32 CreateDirectory 66-69

function on client An inventory record 1s stored on the server and linked to the

customer account read from the Application agent.

US 8,868,933 B2

21

A unique 1dentifying number (the Electronic Serial Num-
ber) 1s assigned to the device associated with this mnven-
tory record.

A typical inventory record 1s shown 1n the figure below:

<?7xml version="1.0" encoding="UTF-8"” 7>

22

delete sub-functions of the CDA. Data delete sub-functions
are called with parameters defining the data to be deleted,
with wildcard vanables to delete complete data structures.
CDA sub-functions may use US Department of Defense rec-

- <CT:data version="1.00" xmlIns: CT="http://www.absolute.com/atinfo/persistence>

- <C'T:section name=“"MachineInfo’>

<(CT:setting name="ComputerMakeWMI” value="VIA TECHNOLOGIES, INC.~~" />

<CT:setting name="ComputerModel WMI"” value="MS-6321~MS-6321~"" />
<CT:setting name="ComputerSerial WMI” value="~~"" />

<CT:setting name="ComputerMake” value="VIA TECHNOLOGIES, INC .~~" />
<CT:setting name="ComputerModel” value="MS-6321~MS-6321~MS-6321~"" />

<(CT setting name="ComputerSerial” value=" value="~~"" />
<(CT:setting name="ComputerAsset0” value="" />
<(CT:setting name="ComputerAssetl” value="" />

<CT:setting name="SystemSMBIOSVersion” value=""" />

<(CT:setting name="SystemBiosVersion” value="VIA694 - 42302e31 Award Modular BIOS v6.00PG” />

<CT:setting name="SystemBiosDate” value="08/22/01" />

<(CT:setting name="BaseBoardVersion” value=""/>

<CT:setting name="HDDSerialNumber0” value="Y3INYPZDE” />
<(CT:setting name="HDDSerialNumberl™ value="YMDYMLJI0046 />
<CT:setting name="HDDSerialNumber2” value=" " />

<CT:setting name="HDDSerialNumber3” value=" " />

<CT:setting name="ComputerName” value="PBGR7” />

<CT:setting name="MACAddress0” value="0050ba432204" />
<CT:setting name="MACAddress1” value="0050bad4434da” />

<CT:setting name="0OSProductKey” value="VF4BY-WXV47-RROJQ-H297B-6QQVW” />

<(CT:setting name="IBMComputraceStatus” value="FFFFFFFF” />
</CT:section>
</CT:data>

D. The Persistent Module’s Reactivation Process

Once the Persistent Agent module 1s launched, the follow-
ing steps happen to reinstall the Application agent and restore
the configuration:

The Persistence Module Agent calls the Monitoring Server
(CTSRV)

The Momitoring Server uses the extensibility features in the
protocol to send down an inventory DLL to 1dentify the
computer—this DLL gathers attributes such as the
BIOS, chassis and hard-drive serial numbers and com-
pares with those previously stored.
The inventory record stored at first activation 1s found and
previous ESN associated with this device’s inventory 1s
reassigned. The Application agent 1s downloaded and
installed and the Application agent then calls normally.
The above process applies to both BIOS and software
persistence (see further discuss below)—i.e. regardless of
where the persistence module 1s located.
Data Delete

Data delete 1s another example of a service enabled, sup-
ported and/or provided by the Agent. As discussed above, the
enhanced survivability of the CDA improves tracking physi-
cal location of the asset. It 1s recognized that even when
location of asset 1s established, physical recovery of tracked
device 1s not always feasible due to applicable local laws,
police enforcement and burden of proot of ownership. In such
instances, programmable capabilities based on the extensible
protocol of the CDA offers alternate means of saleguarding
confidential or sensitive user data on the device. User defined
data files, user profiles or other user defined information, e.g.,
stored on a hard drive at the client device A, can be deleted
under control from the monitoring server. Data deletion can
be done on selected data 1tems, or complete device storage
medium, including the operating system can be erased.

When the full function CDA contacts the monitoring

server, 1dentity of the device 1s verified. If the device 1s
marked for data delete actions, then the extensible commu-
nication protocol described above 1s used to trigger the data

30

35

40

45

50

55

60

65

ommended algorithms to delete the data so as to make 1t

non-recoverable (e.g., US Department of Defense Standard
5220.22-M Clearing and Sanitization Matrix). CDA sub

functions also use available built in operating system support
to delete data. These data deletion algorithms and mecha-
nisms are publicly well known by persons skilled 1n the art,

and actual delete mechanism does not alter the system capa-
bilities being described herein.

The data delete application will delete applications and
data on the hard drive, for example, then will make a call back
in to the monitoring server, where 1t will upload a report
detailing the success of the data delete application. It the data
delete application has been mstructed to exclude deletion of
the operating system, the data delete application will delete
all data and application files, except those required for the
operating system and the Agent to function. At the end of the
delete process, the Agent will attempt to return a status report
to the monitoring server. The computer will remain opera-
tional after the delete process.

If the data delete application has also been instructed to
delete the operating system, 1t will then continue to delete the
operating system {iles, eventually causing the client device A
to stop functioning. In the first pass, the data delete applica-
tion will delete all data and application files, except those
required for the operating system and the Agent to function.
At the end of the first delete process, the Agent will attempt to
return a status report to the momitoring server. The data delete
application will then continue to delete the remainder of the
files on the PC. This will cause the PC to become non-
operational. The Agent will not be able to call the monitoring
server once the full data delete process has been completed. It
the user reinstalls an operating system, the Agent will regain
it original function.

In either configuration, the data delete service has the fol-
lowing features:

Writes a pattern of O and 1 three times to the file

Writes random data to the file

Changes the file attributes to “directory™

US 8,868,933 B2

23

Changes file date/time stamp to a fixed value

Sets the file si1ze to “0”

Changes the file name to a randomly-generated file name

Removes the new file name from the directory

In keeping with the objective to operate as stealthily as
possible, the data delete application 1s disguised. The service
that runs during the delete process 1s titled “HLPMGR.EXE”,
in an attempt to conceal the delete process as an operating
system “help” task running in the background. If the user
stops the process before the deletion 1s completed, the appli-
cation 1s able to resume the deletion process where it leit off,
once the Agent makes 1t’s next call to the monitoring server.
For all client devices enabled with data delete, the Agent call
back period may be set to a predetermined value for both
modem and IP calls.

The time required for the data delete process to complete 1s
dependant on a number of variables, including the speed of
the processor, the size of the hard drive, the amount of data to
be deleted and the amount of activity already taking place on
the client device. It has been determined that the data delete
process can be expected to take between several minutes to
half an hour or more to complete.

The report that 1s returned on a successtul deletion contains
the following information:

Confirmation that the Data Delete application was down-

loaded and executed

List of files deleted

Change 1n hard drive space (This information will only be

available if the asset tracking service has been anabled,
so data ca be collected from the PC. This information
may be provided to the user on the success of the Data
Delete process.

Further Application of Extensible Protocol

As noted above and further below, full function CDA and
mim-CDA (e.g., in the non-BIOS or software persistence
embodiments) use the extensible protocols to keep itself cur-
rent with the most up to date version available on the moni-
toring server. It also uses this capability to keep other asset
tracking extensions updated to the current version. Generic
sub-functions included in the extensible protocol are generic
and flexible so they can be leveraged to have a multitude of
functionalities, 1n addition to asset tracking and data delete
described above. An example of another application of the
extensible protocol 1s to provide downloading and launching
applications from the monitoring server. An executable file
can be downloaded into memory and then launched. Alterna-
tively, an installer can be downloaded from the monitoring,
server and launched to install an application, or upgrade an
ex1isting application.

Alternate Embodiments of Modules

This invention can be implemented 1n a variety of embodi-
ments of Persistent Agent to adapt to their specific environ-
ment based upon factors including, but not limited to: (a)
different BIOS implementations from different device (e.g.,
PC) manufacturers; (b) different interface requirements with
the BIOS; (¢) vanation of tlash memory space available from
different device manufacturers or on different device models;
and (d) ability to work without a BIOS PCI Option ROM
enumeration hook. To adapt to these factors, the CLM 1s
formatted as a PCI Option ROM and the AIM and CDA may
be stored separately, or being bound to the CLM. The CLM

shrinks down to a small stub at the end of the POST cycle. It

the device has a BIOS that does not enumerate the PCI Option
ROM, then the CLM may reside in a partition gap and use a
substitute Master Boot Record (MBR). The different embodi-
ments of the Persistent Agent module configurations are
described more fully below.

10

15

20

25

30

35

40

45

50

55

60

65

24

A. Flash-Resident

In the flash-resident embodiment of the invention, the
CLM, AIM and mini CDA are all loaded in the BIOS flash
image. This approach leverages existing processes used 1n
BIOS where PCI Option ROMs are loaded from the BIOS
flash 1image. The additional modules (the AIM and the mini
CDA) may be stored separately in flash or bound to the CLM
in PCI Option ROM, as 1s 1n the case of FIG. 3.

[the AIM and mini CDA are bound to the CLLM, an 18-20
KB PCI Option ROM 1s loaded by POST 1nto upper shadow
memory and the AIM 1s unpacked by the CLM. The AIM 1n
turn adapts and configures the min1 CDA for the system and
returns control to the CLM. The CLM shrinks the size of PCI
Option ROM image to a minimum and remains in the upper
memory region as a 2 KB ROM block. If the AIM (~6 KB)
and CDA (~10 KB) are simply stored in the flash image, and
not bound to the CLM, the CLM incorporates additional
image access functions to locate and unpack the AIM and
min1 CDA. The operation of the CLM, AIM, and mini1 CDA
are similar to the bound method above. The size of the CLM
1s slightly larger and specially tailored to the platform for
which the tflash image 1s targeted. This approach assumes the
pre-establishment of a vendor ID to allow recognition of the
tflash-resident PCI Option ROM. The management of the flash
image 1s depicted 1n FIG. 11.

B. Hard Drive Partition Gap

Depending on BIOS-specific space limitations, there may
not be sutficient space in the BIOS flash memory for all the
modules of the complete Persistent Agent. In this case,
depending on the device vendor support, the AIM, or the AIM
and the mini1 CDA may be resident 1n a user inaccessible area
in a mass storage device, such as the hard drive partition gap.
This 1s and example of a form of “‘software persistence” In this
embodiment, the CLM still resides 1n flash and gets called
during the PCI Option ROM enumeration process as in the
earlier embodiment, but CLM loads AIM, which 1n turn
executes the CDA from another location.

FIG. 13 depicts the partition gap 1mage management
involved 1n the situation m which the additional modules of
the Persistent Agent will reside within the partition gap. This
gap exists between the MBR and the first partition. The gap 1s
62 sectors, for example, on most new hard drives, but some of
the sectors are reserved by the 1nstallation utility to maintain
compatibility with other software and the useable size i1s
about 27 Kb. This size 1s sufficient to include the base mod-
ules of the Agent (AIM, CDA) necessary to communicate

with the server and bootstrap the rest of the modules 1nto the

OS.
C. Host Protected Area (HPA)

Referring to FIG. 12, alternatively, 1n a situation 1n which
there may not be suificient space in the BIOS flash memory
for all the modules, instead of storing the additional modules
of the Persistent Agent (1.e., AIM, and/or min1 CDA) 1n the
hard drive partition as 1n the previous embodiment, the addi-
tional modules of the Persistent Agent will reside 1n another
user maccessible area on the mass storage device, such as
within the HPA, or 1ts functional equivalent. This 1s another

example of software persistence. Additional support 1is
required to Lock and Unlock HPA. This HPA access mecha-

nism will be PC OEM specific. The images within the HPA
may need to be managed at runtime. The driver and applica-
tions will support the existing methods to authenticate with
the BIOS iterfaces and obtain the necessary runtime access
to manage our portion of the HPA space. In this embodiment,

the CLM still resides 1n flash and gets called during the PCI

US 8,868,933 B2

25

Option ROM enumeration process as 1n the earlier embodi-
ment, but CLM loads AIM, which 1n turn executes the CDA
from another location.

D. Non Flash CLM

While the most secure embodiments will involve the CLM
being resident 1n the BIOS flash memory, there may be envi-
ronments where this 1s not supported. This may be the case
where OEM has not configured the BIOS to enumerate the
CLM header 1n flash during PCI Option ROM scan. On these
systems, an alternative location for the CLM will still provide

a superior solution relative to existing products. The use of a
substitute Master Boot Record offers a solution to this. In this

embodiment, the CLLM loads {from the substitute Master Boot
Record. CLM then loads and passes control to the AIM and
mim CDR, which would be located 1n the partition gap, as
described in the earlier embodiments. The substituted MBR
approach for an agent subloader has been patented by the
assignee, and incorporated by reference herein. The CLM
herein may take advantage of similar subloading approach,
although 1n the present invention, the CLLM has additional and
different functions 1n relation to the AIM and CDA not found
in the earlier patents.
Optimization

The CLM PCI Option ROM 1s not difficult to integrate into
the system BIOS. For example, the IBM Model T43 notebook
computer 1s installed with an IBM BIOS having an option
ROM structure. Its form and function parallels video option
ROMs or motherboard controller option ROMs already exist-
ing 1n the BIOS. In the simple case, the BIOS must simply be
reconiigured to recognize the vendor ID of the CLM. If the
form and function of the CLM 1s more tightly integrated to the
host BIOS, some size-optimization can occur. There 1s an
opportunity to save a little space in the ~20 KB required to
store the CLM, AIM, and CDA modules within the Flash
Image. Below 1s a table listing various functions within the
three main modules and the approximate size of each major
functional group. The “optimization” column lists an esti-
mate of the optimization opportunity of the functional group
within each module.

Function Size Module Optimization
OS Detection 2 KB AIM n/a

File System Support 6 KB AIM n/a
IP/HTTP support 4 KB CDA n/a
Application Layer 4 KB CDA n/a
Service Layer 1 KB CDA n/a
Adaptive Layer 1 KB CDA n/a

PCI Function S KB CLM 0 KB
Image Management S5 KB CLM 3 KB
Execution Environment 1 KB CLM 8 KB

Of the various functions in the modules, only the CLM
tunctions (PCI, Image Management, and the Execution Envi-
ronment) may be optimized with specific support from the
host BIOS. The size of the Image Management functions can
be reduced by about 0.3 KB by using the compression algo-
rithm of the BIOS and by using the “bound” method to store
the AIM and CDA modules. The size of the Execution Envi-
ronment setup and control function can reduced by 0.8 KB by
ensuring that the PCI Option ROM 1is loaded late in POST so
that all disk resources are available and that POST Memory
Manager support 1s not needed. The lower range of the 20 KB
s1ze 1s about ~18.9 KB. On the upper side, if platform specific
support 1s needed within the CLM, 1t may grow by 2 KB.

It the BIOS interface exposes an application program inter-
tace (API) for detecting and configuring the CLM through
SMBIOS, then the 2 KB visible ROM *“stub requirement™ 1s

relaxed.

10

15

20

25

30

35

40

45

50

55

60

65

26

The software Agent as disclosed above has the ability to be
persistent 1n spite of actions that might ordinarily be expected
to remove 1t. The programmable capabilities of the Agent
allows 1its functionality to be extended based on server-driven
commands. The mvention improves upon the ability for a
pre-deployed software Agent to remain “active” regardless of
the actions of a “user” of the device. The users’ actions with
respect to the Agent may be intentional or accidental. The
invention protects the authorized user from the accidental
removal of the software Agent, while allowing the legitimate
need to disable the Agent (for example at end of life of the
computer asset). The mvention prevents an unauthorized user
from removing the Agent software. The persistent attributes
of the present invention have value 1n both security and asset
management applications. In the context of a secure, stealthy
device-tracking software application, the mvention 1s of sig-
nificant value as 1t makes theft of a valuable asset much more
difficult to disguise, as regardless of actions taken by a thiet,
the software will persist and make itself available for contact-
ing a remote monitoring center. In addition, the persistent
nature of the software Agent provides peace of mind to secu-
rity personnel, as 1t provides confidence that the tracking
Agent cannot be accidentally removed. In the context of a
secure asset management application, this 1s of further value
as 1t ensures continuity of tracking an asset over its whole
lifecycle. A key challenge for I'T administrators today 1s the
ability to track assets over the whole lifecycle. During the
lifecycle devices are frequently transierred from one user to
another, during which they may be re-imaged, or have the
operating reinstalled or otherwise be subjected to mainte-
nance procedures that render tracking of the asset difficult.

The process and system of the present invention has been
described above 1n terms of functional modules 1n block
diagram format. It 1s understood that unless otherwise stated
to the contrary herein, one or more functions may be inte-
grated 1n a single physical device or a software module 1n a
soltware product, or one or more functions may be 1mple-
mented 1n separate physical devices or software modules at a
single location or distributed over a network, without depart-
ing from the scope and spirit of the present invention.

It 1s appreciated that detailed discussion of the actual
implementation of each module 1s not necessary for an
enabling understanding of the mvention. The actual 1imple-
mentation 1s well within the routine skill of a programmer and
system engineer, given the disclosure herein of the system
attributes, fTunctionality and inter-relationship of the various
functional modules 1n the system. A person skilled 1n the art,
applying ordinary skill can practice the present invention
without undue experimentation.

While the mnvention has been described with respect to the
described embodiments 1n accordance therewith, it will be
apparent to those skilled 1n the art that various modifications
and improvements may be made without departing from the
scope and spirit of the invention. For example, the informa-
tion extraction application can be easily modified to accom-
modate different or additional processes to provide the user
additional flexibility for web browsing. Accordingly, it 1s to
be understood that the invention 1s not to be limited by the
specific illustrated embodiments, but only by the scope of the
appended claims.

The invention claimed 1s:

1. A persistent servicing agent disposed 1n an electronic
device connected to a network to a remote server, to enable,
support and/or provide at least one service with respect to the
clectronic device, comprising:

a driver agent concealed electronically in a normally user

inaccessible location 1n the electronic device, wherein

US 8,868,933 B2

27

the driver agent 1s configured to be persistent against
external tampering, including self-healing 1n the event
of tampering, wherein the driver agent comprises at least
one ol a partial driver agent or a full function driver
agent, wherein the full function driver agent i1s config-
ured to commumnicate with the network 1n providing the
service, wherein the partial driver agent 1s configured
with a reduced set of functions compared to the full
function driver agent, and to determine whether a full
function driver agent 1s available in the electronic
device, and wherein the partial driver agent 1s further
configured to retrieve over the network a copy of the full
function driver agent 11 1t 1s determined to be not avail-
able 1n the electronic device; and

a run module configured to automatically 1nitiate operation

of the driver agent without user 1nitiation or user inter-
vention.

2. The persistent servicing agent as 1n claim 1, wherein the
run module comprises:

an installer module configured to automatically adapt the

driver agent to an operating environment ol the elec-
tronic device to provide the service without user inter-
vention; and

a loader module configured to automatically load the

installer module, which 1n turn loads the driver agent.

3. The persistent servicing agent as 1n claim 2, wherein the
installer module comprises a programmable module to con-
figure to the specific operating environment of the electronic
device.

4. The persistent servicing agent as 1n claim 3, wherein the
run module 1s configured to 1nitiate operation of the driver
agent independently of an operating system of the electronic
device.

5. The persistent servicing agent as 1n claim 1, wherein the
service comprises at least one of asset tracking, asset recov-
ery, data delete, software deployment, and software upgrade.

6. The persistent servicing agent as in claim 1, wherein at
least a part of it 1s located in the electronic device 1n at least
one of a firmware, software and hardware electronic device.

7. The persistent servicing agent as 1n claim 6, wherein the
firmware comprises a non-volatile memory.

8. The persistent servicing agent as 1n claim 7, wherein the
non-volatile memory 1s a BIOS chip.

9. The persistent servicing agent as 1n claim 2, wherein the
loader module 1s stored 1n firmware, and at least one of the
driver module and the installer module 1s stored 1n a user
inaccessible area on a mass storage device 1n the electronic
device.

10. The persistent servicing agent as in claim 1, wherein the
driver agent 1s configured to communicate with the remote
server, 1o recerve mstructions from the remote server to per-
formthe service 1n accordance with such instructions, thereby
to extend a range of services that can be performed by the
agent.

11. The persistent servicing agent as in claim 10, wherein
the service comprises at least one of asset tracking, asset
recovery, data delete, software deployment, and software
upgrade.

12. The persistent servicing agent as in claim 10, wherein
the driver agent 1s configured to download an application
from the remote server, and launch the application 1n accor-
dance with instructions recerved from the remote server.

5

10

15

20

25

30

35

40

45

50

55

60

28

13. The persistent servicing agent as 1n claim 12, wherein
the application includes an executable {ile.

14. An electronic device, comprising a persistent servicing
agent as 1n claim 1.

15. A method of enabling, supporting and/or providing a
service 1n an electronic device, comprising:

concealing a driver agent electronically 1n a normally user
inaccessible location 1n the electronic device, wherein
the driver agent 1s configured to be persistent against
external tampering, including self-healing in the event
of tampering, wherein the driver agent comprises at least
one of a partial driver agent or a full function driver
agent, wherein the full function driver agent i1s config-
ured to communicate with the network 1n providing the
service, wherein the partial driver agent 1s configured
with a reduced set of functions compared to the full
function driver agent, and to determine whether a full
function driver agent 1s available in the electronic
device, and wherein the partial driver agent 1s turther
configured to retrieve over the network a copy of the full
function driver agent 11 1t 1s determined to be not avail-
able 1n the electronic device:

providing a run module configured to automatically initiate
operation of the driver agent without user 1mitiation or
user 1intervention; and

operatively connecting the driver agent to a network to
communicate with a remote server, to receive 1nstruc-
tions relating to the service.

16. The method as 1n claim 15, wherein the service com-
prises at least one of asset tracking, asset recovery, data
delete, software deployment, and software upgrade.

17. A persistent servicing agent disposed 1n an electronic
device connected to a network to a remote server, to enable,
support and/or provide at least one service with respect to the
clectronic device, comprising:

a driver agent concealed electronically in a normally user
inaccessible location 1n the electronic device, wherein
the driver agent 1s configured to be persistent against
external tampering, including self-healing in the event
of tampering, wherein the driver agent comprises at least
one of a partial driver agent or a full function driver
agent, wherein the full function driver agent 1s config-
ured to communicate with the network 1n providing the
service, wherein the partial driver agent 1s configured
with a reduced set of functions compared to the tull
function driver agent, and to determine whether a full
function driver agent 1s available in the electronic
device, and wherein the partial driver agent 1s further
coniigured to retrieve over the network a copy of the full
function driver agent 11 1t 1s determined to be not avail-
able 1n the electronic device; and

a loader module configured to automatically initiate opera-
tion of the driver agent without user imitiation or user
intervention.

18. The persistent servicing agent as 1in claim 17, further
comprising an installer module configured to automatically
adapt the driver agent to an operating environment of the
clectronic device to provide the service without user interven-
tion.

	Front Page
	Drawings
	Specification
	Claims

